Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Microchemical Journal ; 187:108373, 2023.
Article in English | ScienceDirect | ID: covidwho-2165711

ABSTRACT

A miniaturized clean-up and preconcentration procedure involving deep eutectic solvent-based solidified floating organic drop microextraction was developed for the determination of melatonin in pharmaceuticals and dietary supplements by high-performance liquid chromatography with UV detection. Melatonin is widely used for the treatment of a large spectrum of diseases, and many studies have focused on its efficacy in reducing COVID-19 severity. For the first time, various hydrophobic deep eutectic solvents based on menthol, medium-chain fatty acids, and long-chain alcohols were studied for the microextraction of melatonin. Among the studied solvents, the deep eutectic solvent based on menthol and heptanoic acid provided the highest extraction recovery (90 %). In the developed procedure, a flat magnetic stirrer bar was covered by a microliter amount of the deep eutectic solvent and the sample solution was added under magnetic stirring. In this case, the deep eutectic solvent phase was easily dispersed into the aqueous phase without the use of any organic disperser solvents, resulting in fast analyte extraction (1 min). In the absence of stirring, the aggregation of extract as a floating drop on the surface of the aqueous phase was observed immediately. The low melting/freezing point and low density of the extraction solvent compared with water allowed one to quickly and easily retrieve a low volume of extract (25 μL) in a microextraction procedure by solidification. Validation of the procedure showed that limits of detection and quantification, calculated from the blank tests based on 3σ and 10 σ, were 0.003 mg g−1 and 0.01 mg g−1, respectively.

2.
Drug Development and Registration ; 11(3):220-229, 2022.
Article in Russian | Scopus | ID: covidwho-2057050

ABSTRACT

Introduction. Coronavirus disease (COVID-19) is an acute infectious disease caused by SARS-CoV-2 (severe acute respiratory syndrome-related coronavirus 2). Favipiravir is a synthetic prodrug with antiviral activity used for the treatment of COVID-19. There are oral and parenteral dosage forms of favipiravir. Compared with oral administration, parenteral administration has some advantages. Developing a method for the determination of favipiravir in human blood plasma is necessary for performing the analytical part of clinical studies of favipiravir for parenteral administration as an infusion, studying pharmacokinetics, and choosing the optimal dosage of the drug. Aim. The aim of this study is to develop and validate a method for quantitative determination of favipiravir in human plasma by high-performance liquid chromatography with ultraviolet detection (HPLC-UV) for pharmacokinetic studies. Materials and methods. Determination of favipiravir in human plasma by HPLC-UV. The UV detection was set at 323 ± 2 nm. The samples were processed by methanol protein precipitation. Internal standard: raltegravir. Mobile phase: 0.1 % formic acid in water with 0.08 % aqueous ammonia (eluent A), 0.1 % formic acid in acetonitrile with 0.08 % aqueous ammonia (eluent B). Column: Phenomenex Kinetex®, C18, 150 × 4.6 mm, 5 μm. Analytical range: 0.25–200.00 μg/mL. Results and discussion. This method was validated by selectivity, calibration curve, accuracy, precision, spike recovery, the lower limit of quantification, carry-over effect and stability. Conclusion. We developed and validated the method of quantitative determination of favipiravir in human plasma by HPLC-UV. The analytical range was 0.25–200.00 μg/mL in human plasma. The method could be applied in pharmacokinetics studies of favipiravir. © Komarov T. N., Karnakova P. K., Archakova O. A., Shchelgacheva D. S., Bagaeva N. S., Shohin I. E., Zaslavskaya K. Ya., Bely P. A., 2022.

3.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 23.
Article in English | MEDLINE | ID: covidwho-2043901

ABSTRACT

This study aimed to establish a validated HPLC-UV analytical method for the determination of gallic acid, catechin, scopoletin, and umckalin in phytoformulations containing P. sidoides. Also, to assess the anti-SARS-CoV-2 effect of P. sidoides and these biomolecules in vitro. An HPLC-UV method was developed and verified by testing the commercial forms, Kalobin® and Umca®. It revealed low detectable scopoletin and high umckalin levels. Pelargonium sidoides exhibited a significant reduction of SARS-CoV-2-induced cytopathic effect in Vero E6 cells (IC50 13.79 µg/mL and selectivity index, SI 6.3), whereas scopoletin showed a remarkable anti-SARS-CoV-2 activity with better selectivity (IC50 17.79 µg/mL and SI 14.22). An in-silico prediction of the drugability indicated that the studied biomolecules are under the acceptable norms of Lipinski's rule, water-soluble, and showed high GIT absorption and bioavailability. Docking study towards the essential molecular targets for viral replication and entry of SARS-CoV-2 indicated good binding affinity of scopoletin (-6.4 Kcal/mol) towards the interface region between the SARS-CoV-2 spike protein RBD and the ACE2 surface receptor indicating the probability of interference with the viral entry to the human cells and showed H-bonding with His-41 in the active site of the main protease which may explain its high antiviral activity.

4.
Chem Zvesti ; 76(11): 6941-6951, 2022.
Article in English | MEDLINE | ID: covidwho-1976865

ABSTRACT

Many antiviral drugs were developed to counteract coronavirus disease, 2019 (COVID-19) with severe acute respiratory syndrome. Therefore, the scientific community's efforts have focused on the detection and quantification of antiviral compounds currently being tested for COVID-19 treatment. Cuttlefish bone powder (CFBP) has been used for the first time as solid-phase extraction (SPE) sorbent for the extraction of SARS CoV-2 antiviral drugs (chloroquine, ritonavir and indomethacin) from water samples. An effective and sensitive method was developed by combining SPE and liquid chromatography- UV detection (LC-UV). An experimental design was applied for the optimization of extraction process. Experimental variables were optimized using Doehlert matrix. The developed method included 50 mg of CFBP sorbent, 20 mL of water sample at pH = 9 and 5 mL of ACN/KH2PO4 buffer solution (80:20, v/v) in the elution step. For validation of the method, selectivity, linearity precision, and sensitivity were evaluated. Extraction recovery percentage of all Sars cov-2 antivirals were above 98.2%. The detection and quantification limits were between 0.1 and 0.5 µg L-1 and 0.6 and 2 µg L-1, respectively. The current study suggested that CFBP has the application potential for the enhanced SPE of SARS CoV-2 antiviral drugs from water samples.

5.
Molecules ; 27(11)2022 Jun 02.
Article in English | MEDLINE | ID: covidwho-1953753

ABSTRACT

Salicylic acid is a key compound in nonsteroidal anti-inflammatory drugs that has been recently used for preventing the risk of hospitalization and death among COVID-19 patients and in preventing colorectal cancer (CRC) by suppressing two key proteins. Understanding drug-drug interaction pathways prevent the occurrence of adverse drug reactions in clinical trials. Drug-drug interactions can result in the variation of the pharmacodynamics and pharmacokinetic of the drug. Inhibition of the Cytochrome P450 enzyme activity leads to the withdrawal of the drug from the market. The aim of this paper was to develop and validate an HPLC-UV method for the quantification of 4'-hydroxydiclofenac as a CYP2C9 metabolite using salicylic acid as an inhibitor in rat liver microsomes. A CYP2C9 assay was developed and validated on the reversed phase C18 column (SUPELCO 25 cm × 4.6 mm × 5 µm) using a low-pressure gradient elution programming at T = 30 °C, a wavelength of 282 nm, and a flow rate of 1 mL/min. 4'-hydroxydiclofenac demonstrated a good linearity (R2 > 0.99), good reproducibility, low detection, and quantitation limit, and the inter and intra-day precision met the ICH guidelines (<15%). 4'-hydroxydiclofenac was stable for three days and showed an acceptable accuracy and recovery (80-120%) within the ICH guidelines in a rat liver microsome sample. This method will be beneficial for future applications of the in vitro inhibitory effect of salicylic acid on the CYP2C9 enzyme activity in rat microsomes and the in vivo administration of salicylic acid in clinical trials.


Subject(s)
Diclofenac , Microsomes, Liver , Animals , Chromatography, High Pressure Liquid/methods , Cytochrome P-450 CYP2C9 , Diclofenac/analogs & derivatives , Diclofenac/analysis , Drug Interactions , Humans , Rats , Reproducibility of Results , Salicylic Acid/pharmacology
6.
Food Chem X ; 14: 100302, 2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-1796842

ABSTRACT

Kombucha, originated in China 2000  years ago, is a sour and sweet-tasted drink, prepared traditionally through fermentation of black tea. During the fermentation of kombucha, consisting of mainly acidic compounds, microorganisms, and a tiny amount of alcohol, a biofilm called SCOBY forms. The bacteria in kombucha has been generally identified as Acetobacteraceae. Kombucha is a noteworthy source of B complex vitamins, polyphenols, and organic acids (mainly acetic acid). Nowadays, kombucha is tended to be prepared with some other plant species, which, therefore, lead to variations in its composition. Pre-clinical studies conducted on kombucha revealed that it has desired bioactivities such as antimicrobial, antioxidant, hepatoprotective, anti-hypercholestorelomic, anticancer, anti-inflammatory, etc. Only a few clinical studies have been also reported. In the current review, we aimed to overhaul pre-clinical bioactivities reported on kombucha as well as its brief compositional chemistry. The literature data indicate that kombucha has valuable biological effects on human health.

7.
Biomed Chromatogr ; 36(6): e5365, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1739127

ABSTRACT

Favipiravir is a potential antiviral medication that has been recently licensed for Covid-19 treatment. In this work, a gadolinium-based magnetic ionic liquid was prepared and used as an extractant in dispersive liquid-liquid microextraction (DLLME) of favipiravir in human plasma. The high enriching ability of DLLME allowed the determination of favipiravir in real samples using HPLC/UV with sufficient sensitivity. The effects of several variables on extraction efficiency were investigated, including type of extractant, amount of extractant, type of disperser and disperser volume. The maximum enrichment was attained using 50 mg of the Gd-magnetic ionic liquid (MIL) and 150 µl of tetrahydrofuran. The Gd-based MIL could form a supramolecular assembly in the presence of tetrahydrofuran, which enhanced the extraction efficiency of favipiravir. The developed method was validated according to US Food and Drug Administration bioanalytical method validation guidelines. The coefficient of determination was 0.9999, for a linear concentration range of 25 to 1.0 × 105  ng/ml. The percentage recovery (accuracy) varied from 99.83 to 104.2%, with RSD values (precision) ranging from 4.07 to 11.84%. The total extraction time was about 12 min and the HPLC analysis time was 5 min. The method was simple, selective and sensitive for the determination of favipiravir in real human plasma.


Subject(s)
COVID-19 Drug Treatment , Ionic Liquids , Liquid Phase Microextraction , Amides , Chromatography, High Pressure Liquid/methods , Furans , Gadolinium , Humans , Liquid Phase Microextraction/methods , Magnetic Phenomena , Pyrazines
8.
Materials (Basel) ; 14(21)2021 Oct 28.
Article in English | MEDLINE | ID: covidwho-1512476

ABSTRACT

Deep Eutectic Solvents (DESs) are experiencing growing interest as substitutes of polluting organic solvents for their low or absent toxicity and volatility. Moreover, they can be formed with natural bioavailable and biodegradable molecules; they are synthesized in absence of hazardous solvents. DESs are, inter alia, successfully used for the extraction/preconcentration of biofunctional molecules from complex vegetal matrices. Onion skin is a highly abundant waste material which represents a reservoir of molecules endowed with valuable biological properties such as quercetin and its glycosylated forms. An efficient extraction of these molecules from dry onion skin from "Dorata di Parma" cultivar was obtained with water dilution of acid-based DESs. Glycolic acid (with betaine 2/1 molar ratio and L-Proline 3/1 molar ratio as counterparts) and of p-toluensulphonic acid (with benzyltrimethylammonium methanesulfonate 1/1 molar ratio)-based DESs exhibited more than 3-fold higher extraction efficiency than methanol (14.79 µg/mL, 18.56 µg/mL, 14.83 µg/mL vs. 5.84 µg/mL, respectively). The extracted quercetin was also recovered efficaciously (81% of recovery) from the original extraction mixture. The proposed extraction protocol revealed to be green, efficacious and selective for the extraction of quercetin from onion skin and it could be useful for the development of other extraction procedures from other biological matrixes.

10.
Pharmaceutics ; 13(4)2021 Apr 17.
Article in English | MEDLINE | ID: covidwho-1238933

ABSTRACT

A high-performance liquid chromatography-ultraviolet detector (HPLC-UV) method has been used to quantify teicoplanin concentrations in human plasma. However, the limited analytical accuracy of previously bioanalytical methods for teicoplanin has given rise to uncertainty due to the use of an external standard. In this study, an internal standard (IS), polymyxin B, was applied to devise a precise, accurate, and feasible HPLC-UV method. The deproteinized plasma sample containing teicoplanin and an IS of acetonitrile was chromatographed on a C18 column with an acidic mobile phase consisting of NaH2PO4 buffer and acetonitrile (78:22, v/v) by isocratic elution and detection at 220 nm. The linearity was in the range 7.8-500 mg/L calculated by the ratio of the teicoplanin signal to the IS signal. This analytical method, validated by FDA guidelines with ICH Q2 (R1), was successfully applied to analyze the plasma samples of patients in the intensive care unit for treating serious resistant bacterial infectious diseases, such as those by methicillin-resistant Staphylococcus aureus and Enterococcus faecalis. The methods suggested the potential for use in routine clinical practice for therapeutic drug monitoring of teicoplanin, providing both improved accuracy and a wide range of linearity from lower than steady-state trough concentrations (10 mg/L) to much higher concentrations.

SELECTION OF CITATIONS
SEARCH DETAIL